Controlling the Parrot AR Drone with the Myo armband in Node.js

myo-drone-nodjs-tutorial

Following the last tutorial I wrote on how to control the Sphero with the Myo armband, here is another one on how to control the Parrot AR Drone with the Myo using Node.js.

If you want to follow along, you can find the repo on my github.

To begin with, we need to setup the server configuration. After requiring the necessary modules, here is what we need to write:

var env = process.env.NODE_ENV || 'development';
if('development' == env){
  app.set('port', process.env.PORT || 3000);
  app.use(express.static(__dirname + '/public'));
  app.use("/node_modules", express.static(path.join(__dirname, 'node_modules')))
}

server = require('http').createServer(app);

var bayeux = new faye.NodeAdapter({
    mount: '/faye',
    timeout: 50
  });

  bayeux.attach(server);

  client = new faye.Client("http://localhost:" + (app.get("port")) + "/faye", {});

  client.subscribe("/drone/move", function (d) {
    console.log(d);
    console.log("drone move?")
    return drone[d.action](d.speed);
  });

  client.subscribe("/drone/drone", function (d) {
    console.log(d);
    console.log("drone stuff")
      return drone[d.action]();
  });

  server.listen(app.get('port'), function () {
    console.log("Express server listening on port " + app.get("port"));
  })

We use express to set up the server and Faye & Bayeux for the communications between the Drone and your app.

We also use the module ‘dronestream’ to be able to stream video from the drone to the browser that is listening on port 3001.

The rest of the code deals with the commands sent from the Myo to the drone. First of all, we need to create an instance of the Myo and then define some commands.

myo = Myo.create();

myo.unlock();

myo.on('fingers_spread', function(){
    takeoff();
});

myo.on('wave_in', function(){
    goLeft();
})

var takeoff = function () {
    flying = true;
    return faye.publish("/drone/drone", {
      action: 'takeoff'
    });
};

var goLeft = function(){
    stopped = false;
    setTimeout(function (){
      return faye.publish("/drone/move", {
        action: 'left'
        // speed: adjustXspeed
      })
    }, timeout);
  };

Once the instance of the Myo is created, it can detect certain types of movements and run functions accordingly.

The ‘myo.unlock()’ command should allow the Myo to be unlocked while you use the app. However, I noticed I still needed to execute the unlock gesture ‘double tap’ between each command… Then the ‘faye.publish’ allows to send the commands and make the drone move. You can adjust the action and speed as you like.

This is just a snippet so once again, if you wanna have a look at the rest of the code or if you want to play around with it, everything is available on my Github šŸ™‚

Hope it helps and enjoy!

Advertisements

Control the Parrot ARDrone with the Leap Motion in Cylon.js

cylon-drone-leapmotion

Following my tutorial onĀ controlling the Sphero using the Leap Motion, I thought I would keep on converting my Node.js projects to Cylon.js and work on controlling the Drone with the Leap Motion.

If you’ve had a look at my last tutorial, you probably noticed that using Cylon.js makes it really easy to program for hardware and connect multiple devices together.

Below is the usual setup of any Cylon project:


var Cylon = require('cylon');

Cylon.robot({
  connections:{
    leapmotion: {adaptor: 'leapmotion'},
    ardrone: {adaptor: 'ardrone', port: '192.168.1.1'}
  },

  devices: {
    leapmotion: {driver: 'leapmotion', connection: 'leapmotion'},
    drone: {driver: 'ardrone', connection: 'ardrone'}
  },
 

As you can see, you simply need to specify which devices you are using, the more interesting bit comes in the rest of the code…

work: function(my){
   my.leapmotion.on('hand', function(hand){
     my.drone.takeoff();
     after((5).seconds(), function(){
       my.drone.land();
     })
   })
 }
}).start();

This code only makes the Drone take off when the Leap Motion senses a handĀ over it and land after 5 seconds (just in case it decides to go crazy…).

Then, if you want to make it do more interesting things, you will have to play around with what the Leap Motion has to offer; different types of gestures, distance, hands, fingers, etc… The Drone actions themselves are pretty straightforward:

  • my.drone.up();
  • my.drone.down();
  • my.drone.forward();
  • my.drone.back();
  • my.drone.left();
  • my.drone.right();

You can also make the drone rotate clockwise or counterclockwise but what I found the most awesome thingĀ is that the cylon-ardrone module makes the ‘flip’ movement really easy to execute. On a ‘keyTap’ for example, your drone could do a backflip!!

The code for that would look like this:

 work: function(my){
   my.leapmotion.on('gesture', function(gesture){
     if(gesture){
       my.drone.takeoff();
       if(gesture.type === 'keyTap'){
         my.drone.backFlip();
         after((6).seconds(), function(){
          my.drone.land();
         }
       }
     } else {
       my.drone.stop();
     };
   };
 }
}).start();

If you wanna see the difference with Node.js, you can find my original Github repoĀ here, otherwise here is the repo with more commands!

If you have any question, don’t hesitate!